Gravothermal Catastrophe and Generalized Entropy of Self-Gravitating Systems

نویسندگان

  • Atsushi Taruya
  • Masa-aki Sakagami
چکیده

We present a first physical application of Tsallis’ generalized entropy to the thermodynamics of self-gravitating systems. The stellar system confined in a spherical cavity of radius re exhibits an instability, so-called gravothermal catastrophe, which has been originally investigated by Antonov (Vest.Leningrad Gros.Univ. 7 (1962) 135) and Lynden-Bell & Wood (Mon.Not.R.Astron.Soc. 138 (1968) 495) on the basis of the maximum entropy principle for the phase-space distribution function. In contrast to previous analyses using the Boltzmann-Gibbs entropy, we apply the Tsallis-type generalized entropy to seek the equilibrium criteria. Then the distribution function of Vlassov-Poisson system can be reduced to the stellar polytrope system. Evaluating the second variation of Tsallis entropy and solving the zero eigenvalue problem explicitly, we find that the gravothermal instability appears in cases with polytrope index n > 5. The critical point characterizing the onset of instability are obtained, which exactly matches with the results derived from the standard turning-point analysis. The results give an important suggestion that the Tsallis entropy is indeed applicable and viable to the long-range nature of the selfgravitating system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gravothermal Catastrophe and Tsallis’ Generalized Entropy of Self-Gravitating Systems

We present a first physical application of Tsallis’ generalized entropy to the thermodynamics of self-gravitating systems. The stellar system confined in a spherical cavity of radius re exhibits an instability, so-called gravothermal catastrophe, which has been originally investigated by Antonov (Vest.Leningrad Gros.Univ. 7 (1962) 135) and Lynden-Bell & Wood (Mon.Not.R.Astron.Soc. 138 (1968) 49...

متن کامل

Gravothermal Catastrophe and Tsallis’ Generalized Entropy of Self-Gravitating Systems II. Thermodynamic properties of stellar polytrope

In this paper, we continue to investigate the thermodynamic properties of stellar self-gravitating system arising from the Tsallis generalized entropy. In particular, physical interpretation of the thermodynamic instability, as has been revealed by previous paper(Taruya & Sakagami, Physica A 307 (2002) 185), is discussed in detail based on the framework of non-extensive thermostatistics. Examin...

متن کامل

Thermodynamics of self-gravitating systems.

We study the thermodynamics and the collapse of a self-gravitating gas of Brownian particles. We consider a high-friction limit in order to simplify the problem. This results in the Smoluchowski-Poisson system. Below a critical energy or below a critical temperature, there is no equilibrium state and the system develops a self-similar collapse leading to a finite time singularity. In the microc...

متن کامل

Statistical mechanics and phase diagrams of rotating self-gravitating fermions

We compute statistical equilibrium states of rotating self-gravitating systems enclosed within a box by maximizing the Fermi-Dirac entropy at fixed mass, energy and angular momentum. The Fermi-Dirac distribution describes quantum particles (fermions) subject to Pauli’s exclusion principle. It is also a typical prediction of Lynden-Bell’s theory of violent relaxation for collisionless stellar sy...

متن کامل

Thermodynamics of the self-gravitating ring model: Analyses with new iterative method

In order to obtain the stable stationary mass distribution, we apply a new iterative method, inspired by a previous one used in 2D turbulence, which ensures entropy increase and, hence, convergence towards an equilibrium state. Applying new iterative method, we analyze the phase transition and the difference between microcanonical and canonical ensemble in an intermediate energy region. There a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001